50 resultados para COA REDUCTASE INHIBITORS

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl–SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of the sterol-synthesizing mevalonate pathway occurs in part through feedback-regulated endoplasmic reticulum degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R). In yeast, the Hmg2p isozyme of HMG-R is regulated in this manner. We have tested the involvement of ubiquitination in the regulated degradation of Hmg2p, by using both genetic and direct biochemical approaches. Hmg2p degradation required the UBC7 gene, and Hmg2p protein was directly ubiquitinated. Hmg2p ubiquitination was dependent on UBC7 and was specific for the degraded yeast Hmg2p isozyme. Furthermore, Hmg2p ubiquitination was regulated by the mevalonate pathway in a manner consistent with regulation of Hmg2p stability. Thus, regulated ubiquitination appeared to be the mechanism by which Hmg2p stability is controlled in yeast. Finally, our data indicated that the feedback signal controlling Hmg2p ubiquitination and degradation was derived from farnesyl diphosphate, and thus implied conservation of an HMG-R degradation signal between yeast and mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation rate of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-R), a key enzyme of the mevalonate pathway, is regulated through a feedback mechanism by the mevalonate pathway. To discover the intrinsic determinants involved in the regulated degradation of the yeast HMG-R isozyme Hmg2p, we replaced small regions of the Hmg2p transmembrane domain with the corresponding regions from the other, stable yeast HMG-R isozyme Hmg1p. When the first 26 amino acids of Hmg2p were replaced with the same region from Hmg1p, Hmg2p was stabilized. The stability of this mutant was not due to mislocalization, but rather to an inability to be recognized for degradation. When amino acid residues 27–54 of Hmg2p were replaced with those from Hmg1p, the mutant was still degraded, but its degradation rate was poorly regulated. The degradation of this mutant was still dependent on the first 26 amino acid residues and on the function of the HRD genes. These mutants showed altered ubiquitination levels that were well correlated with their degradative phenotypes. Neither determinant was sufficient to impart regulated degradation to Hmg1p. These studies provide evidence that there are sequence determinants in Hmg2p necessary for degradation and optimal regulation, and that independent processes may be involved in Hmg2p degradation and its regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using β-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

(R,S)-[1-14C]3-Hydroxy eicosanoyl-coenzyme A (CoA) has been chemically synthesized to study the 3-hydroxy acyl-CoA dehydratase involved in the acyl-CoA elongase of etiolated leek (Allium porrum L.) seedling microsomes. 3-Hydroxy eicosanoyl-CoA (3-OH C20:0-CoA) dehydration led to the formation of (E)-2,3 eicosanoyl-CoA, which has been characterized. Our kinetic studies have determined the optimal conditions of the dehydration and also resolved the stereospecificity requirement of the dehydratase for (R)-3-OH C20:0-CoA. Isotopic dilution experiments showed that 3-hydroxy acyl-CoA dehydratase had a marked preference for (R)-3-OH C20:0-CoA. Moreover, the very-long-chain synthesis using (R)-3-OH C20:0-CoA isomer and [2-14C]malonyl-CoA was higher than that using the (S) isomer, whatever the malonyl-CoA and the 3-OH C20:0-CoA concentrations. We have also used [1-14C]3-OH C20:0-CoA to investigate the reductant requirement of the enoyl-CoA reductase of the acyl-CoA elongase complex. In the presence of NADPH, [1-14C]3-OH C20:0-CoA conversion was stimulated. Aside from the product of dehydration, i.e. (E)-2,3 eicosanoyl-CoA, we detected eicosanoyl-CoA resulting from the reduction of (E)-2,3 eicosanoyl-CoA. When we replaced NADPH with NADH, the eicosanoyl-CoA was 8- to 10-fold less abundant. Finally, in the presence of malonyl-CoA and NADPH or NADH, [1-14C]3-OH C20:0-CoA led to the synthesis of very-long-chain fatty acids. This synthesis was measured using [1-14C]3-OH C20:0-CoA and malonyl-CoA or (E)-2,3 eicosanoyl-CoA and [2-14C]malonyl-CoA. In both conditions and in the presence of NADPH, the acyl-CoA elongation activity was about 60 nmol mg−1 h−1, which is the highest ever reported for a plant system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A previously unknown chemical structure, 6-desmethyl-6-ethylerythromycin A (6-ethylErA), was produced through directed genetic manipulation of the erythromycin (Er)-producing organism Saccharopolyspora erythraea. In an attempt to replace the methyl side chain at the C-6 position of the Er polyketide backbone with an ethyl moiety, the methylmalonate-specific acyltransferase (AT) domain of the Er polyketide synthase was replaced with an ethylmalonate-specific AT domain from the polyketide synthase involved in the synthesis of the 16-member macrolide niddamycin. The genetically altered strain was found to produce ErA, however, and not the ethyl-substituted derivative. When the strain was provided with precursors of ethylmalonate, a small quantity of a macrolide with the mass of 6-ethylErA was produced in addition to ErA. Because substrate for the heterologous AT seemed to be limiting, crotonyl-CoA reductase, a primary metabolic enzyme involved in butyryl-CoA production in streptomycetes, was expressed in the strain. The primary macrolide produced by the reengineered strain was 6-ethylErA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied components of the endoplasmic reticulum (ER) proofreading and degradation system in the yeast Saccharomyces cerevisiae. Using a der3–1 mutant defective in the degradation of a mutated lumenal protein, carboxypeptidase yscY (CPY*), a gene was cloned which encodes a 64-kDa protein of the ER membrane. Der3p was found to be identical with Hrd1p, a protein identified to be necessary for degradation of HMG-CoA reductase. Der3p contains five putative transmembrane domains and a long hydrophilic C-terminal tail containing a RING-H2 finger domain which is oriented to the ER lumen. Deletion of DER3 leads to an accumulation of CPY* inside the ER due to a complete block of its degradation. In addition, a DER3 null mutant allele suppresses the temperature-dependent growth phenotype of a mutant carrying the sec61–2 allele. This is accompanied by the stabilization of the Sec61–2 mutant protein. In contrast, overproduction of Der3p is lethal in a sec61–2 strain at the permissive temperature of 25°C. A mutant Der3p lacking 114 amino acids of the lumenal tail including the RING-H2 finger domain is unable to mediate degradation of CPY* and Sec61–2p. We propose that Der3p acts prior to retrograde transport of ER membrane and lumenal proteins to the cytoplasm where they are subject to degradation via the ubiquitin-proteasome system. Interestingly, in ubc6-ubc7 double mutants, CPY* accumulates in the ER, indicating the necessity of an intact cytoplasmic proteolysis machinery for retrograde transport of CPY*. Der3p might serve as a component programming the translocon for retrograde transport of ER proteins, or it might be involved in recognition through its lumenal RING-H2 motif of proteins of the ER that are destined for degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We are studying the intracellular trafficking of the multispanning membrane protein Ste6p, the a-factor transporter in Saccharomyces cerevisiae and a member of the ATP-binding cassette superfamily of proteins. In the present study, we have used Ste6p as model for studying the process of endoplasmic reticulum (ER) quality control, about which relatively little is known in yeast. We have identified three mutant forms of Ste6p that are aberrantly ER retained, as determined by immunofluorescence and subcellular fractionation. By pulse-chase metabolic labeling, we demonstrate that these mutants define two distinct classes. The single member of Class I, Ste6–166p, is highly unstable. We show that its degradation involves the ubiquitin–proteasome system, as indicated by its in vivo stabilization in certain ubiquitin–proteasome mutants or when cells are treated with the proteasome inhibitor drug MG132. The two Class II mutant proteins, Ste6–13p and Ste6–90p, are hyperstable relative to wild-type Ste6p and accumulate in the ER membrane. This represents the first report of a single protein in yeast for which distinct mutant forms can be channeled to different outcomes by the ER quality control system. We propose that these two classes of ER-retained Ste6p mutants may define distinct checkpoint steps in a linear pathway of ER quality control in yeast. In addition, a screen for high-copy suppressors of the mating defect of one of the ER-retained ste6 mutants has identified a proteasome subunit, Hrd2p/p97, previously implicated in the regulated degradation of wild-type hydroxymethylglutaryl-CoA reductase in the ER membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current paper describes a line of cultured rat hepatoma cells (McA-RH7777 cells) that mimics the behavior of rat liver by producing an excess of mRNA for sterol regulatory element-binding protein 1c (SREBP-1c) as opposed to SREBP-1a. These two transcripts are derived from a single gene by use of alternative promoters that are separated by many kilobases in the genome. The high level of SREBP-1c mRNA is abolished when cholesterol synthesis is blocked by compactin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase that inhibits cholesterol synthesis. Levels of SREBP-1c mRNA are restored by mevalonate, the product of the HMG CoA reductase reaction, and by ligands for the nuclear hormone receptor LXR, including 22(R)-hydroxycholesterol and T0901317. These data suggest that transcription of the SREBP-1c gene in hepatocytes requires tonic activation of LXR by an oxysterol intermediate in the cholesterol biosynthetic pathway. Reduction of this intermediate lowers SREBP-1c levels, and this in turn is predicted to lower the rates of fatty acid biosynthesis in liver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biochemical, epidemiological, and genetic findings demonstrate a link between cholesterol levels, processing of the amyloid precursor protein (APP), and Alzheimer's disease. In the present report, we identify the α-secretase ADAM 10 (a disintegrin and metalloprotease) as a major target of the cholesterol effects on APP metabolism. Treatment of various peripheral and neural cell lines with either the cholesterol-extracting agent methyl-β-cyclodextrin or the hydroxymethyl glutaryl-CoA reductase inhibitor lovastatin resulted in a drastic increase of secreted α-secretase cleaved soluble APP. This strong stimulatory effect was in the range obtained with phorbol esters and was further increased in cells overexpressing ADAM 10. In cells overexpressing APP, the increase of α-secretase activity resulted in a decreased secretion of Aβ peptides. Several mechanisms were elucidated as being the basis of enhanced α-secretase activity: increased membrane fluidity and impaired internalization of APP were responsible for the effect observed with methyl-β-cyclodextrin; treatment with lovastatin resulted in higher expression of the α-secretase ADAM 10. Our results demonstrate that cholesterol reduction promotes the nonamyloidogenic α-secretase pathway and the formation of neuroprotective α-secretase cleaved soluble APP by several mechanisms and suggest approaches to prevention of or therapy for Alzheimer's disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When the human prostate cancer cell line, LNCaP 104-S, the growth of which is stimulated by physiological levels of androgen, is cultured in androgen-depleted medium for > 100 passages, the cells, now called LNCaP 104-R2, are proliferatively repressed by low concentrations of androgens. LNCaP 104-R2 cells formed tumors in castrated male athymic nude mice. Testosterone propionate (TP) treatment prevented LNCaP 104-R2 tumor growth and caused regression of established tumors in these mice. Such a tumor-suppressive effect was not observed with tumors derived from LNCaP 104-S cells or androgen receptor-negative human prostate cancer PC-3 cells. 5 alpha-Dihydrotestosterone, but not 5 beta-dihydrotestosterone, 17 beta-estradiol, or medroxyprogesterone acetate, also inhibited LNCaP 104-R2 tumor growth. Removal of TP or implantation of finasteride, a 5 alpha-reductase inhibitor, in nude mice bearing TP implants resulted in the regrowth of LNCaP 104-R2 tumors. Within 1 week after TP implantation, LNCaP 104-R2 tumors exhibited massive necrosis with severe hemorrhage. Three weeks later, these tumors showed fibrosis with infiltration of chronic inflammatory cells and scattered carcinoma cells exhibiting degeneration. TP treatment of mice with LNCaP 104-R2 tumors reduced tumor androgen receptor and c-myc mRNA levels but increased prostate-specific antigen in serum- and prostate-specific antigen mRNA in tumors. Although androgen ablation has been the standard treatment for metastatic prostate cancer for > 50 years, our study shows that androgen supplementation therapy may be beneficial for treatment of certain types of human prostate cancer and that the use of 5 alpha-reductase inhibitors, such as finasteride or anti-androgens, in the general treatment of metastatic prostate cancer may require careful assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To test the utility of green fluorescent protein (GFP) as an in vivo reporter protein when fused to a membrane domain, we made a fusion protein between yeast hydroxymethylglutaryl-CoA reductase and GFP. Fusion proteins displayed spatial localization and regulated degradation consistent with the native hydroxymethylglutaryl-CoA reductase proteins. Thus, GFP should be useful in the study of both membrane protein localization and protein degradation in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We and other groups have recently reported the potentiation by ribonucleotide reductase inhibitors such as hydroxyurea of the anti-human immunodeficiency virus type 1 (HIV-1) activity of purine and pyrimidine 2',3'-dideoxynucleosides in both resting and phytohemagglutinin-stimulated peripheral blood mononuclear cells. Little agreement prevails, however, as to the mechanism of the synergistic effects described. We report here that in phytohemagglutinin-stimulated peripheral blood mononuclear cells, two mechanisms exist for the potentiation of the anti-HIV-1 activity by low-dose hydroxyurea of the purine-based dideoxynucleoside 2',3'-dideoxyinosine and the pyrimidine-based dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine. For 2',3'-dideoxyinosine, the enhancement arises from a specific depletion of dATP by hydroxyurea, resulting in a favorable shift of the 2',3'-dideoxyadenosine 5'-triphosphate/dATP ratio. For the pyrimidine dideoxynucleosides 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine, the more modest anti-HIV enhancement results from hydroxyurea-induced increases of pyrimidine kinase activities in the salvage pathway and, hence, increased 5'-phosphorylation of these drugs, while depletion of the corresponding deoxynucleoside 5'-triphosphates (dTTP and dCTP) plays no significant role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence of cholesterol gallstones differs among inbred strains of mice fed a diet containing 15% (wt/wt) dairy fat, 1% (wt/wt) cholesterol, and 0.5% (wt/wt) cholic acid. Strains C57L, SWR, and A were notable for a high prevalence of cholelithiasis; strains C57BL/6, C3H, and SJL had an intermediate prevalence; and strains SM, AKR, and DBA/2 exhibited no cholelithiasis after consuming the diet for 18 weeks. Genetic analysis of the difference in gallstone prevalence rates between strains AKR and C57L was carried out by using the AKXL recombinant inbred strain set and (AKR x C57L)F1 x AKR backcross mice. Susceptibility to gallstone formation was found to be a dominant trait determined by at least two genes. A major gene, named Lith1, mapped to mouse chromosome 2. When examined after 6 weeks on the lithogenic diet, the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.88) was downregulated as expected in the gallstone-resistant strains, AKR and SJL, but this enzyme failed to downregulate in C57L and SWR, the gallstone-susceptible strains. This suggests that regulation of the rate-limiting enzyme in cholesterol biosynthesis may be pivotal in determining the occurrence and severity of cholesterol hypersecretion and hence lithogenicity of gallbladder bile. These studies indicate that genetic factors are critical in determining gallstone formation and that the genetic resources of the mouse model may permit these factors to be identified.